

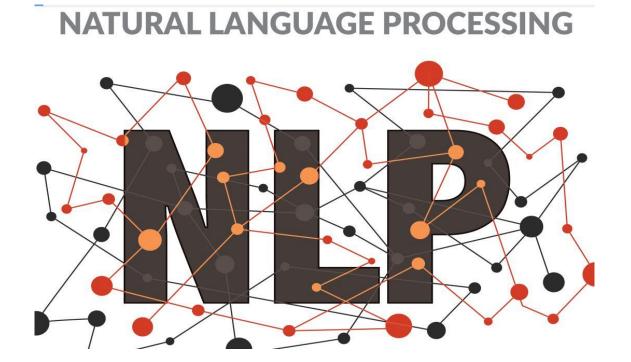
BiSyn-GAT+: Bi-Syntax Aware Graph Attention Network for Aspect-based Sentiment Analysis

Shuo Liang¹, Wei Wei^{2, ⊠}, Xian-Ling Mao³, Fei Wang⁴, Zhiyong He⁵
^{1,2} Cognitive Computing and Intelligent Information Processing (CCIIP) Laboratory,
School of Computer Science and Technology, Huazhong University of Science and Technology
³ School of Computer Science and Technology, Beijing Institute of Technology
⁴ Institute of Computing Technology, Chinese Academy of Sciences
⁵ Naval University of Engineering
¹ shuoliang@hust.edu.cn, ² weiw@hust.edu.cn, ³ maoxl@bit.edu.cn,
⁴ wangfei@ict.ac.cn, ⁵ moonmon_pub@outlook.com

code:https://github.com/CCIIPLab/BiSyn_GAT_plus

2022.12.15 • ChongQing

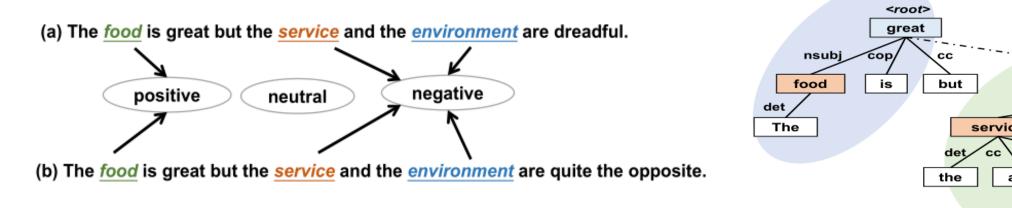
2022_ACL

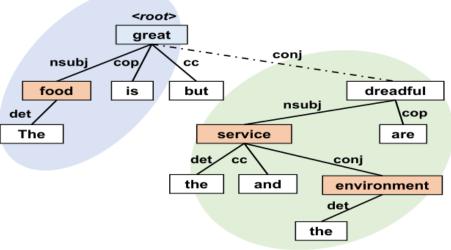


1.Introduction

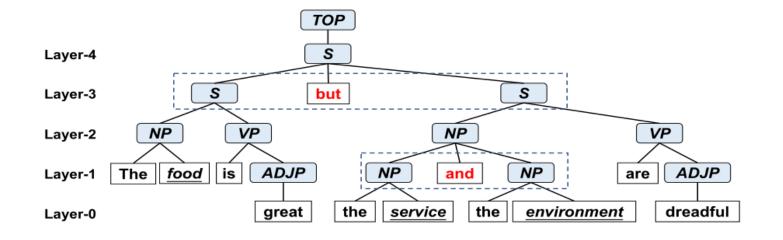
2.Method

3.Experiments



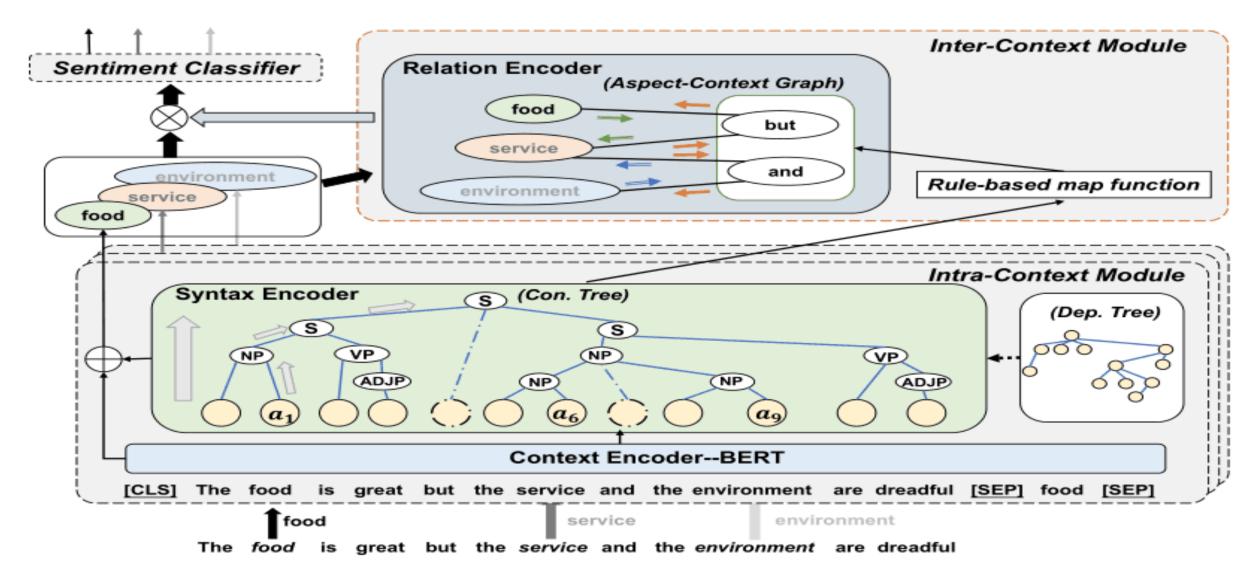


Introduction

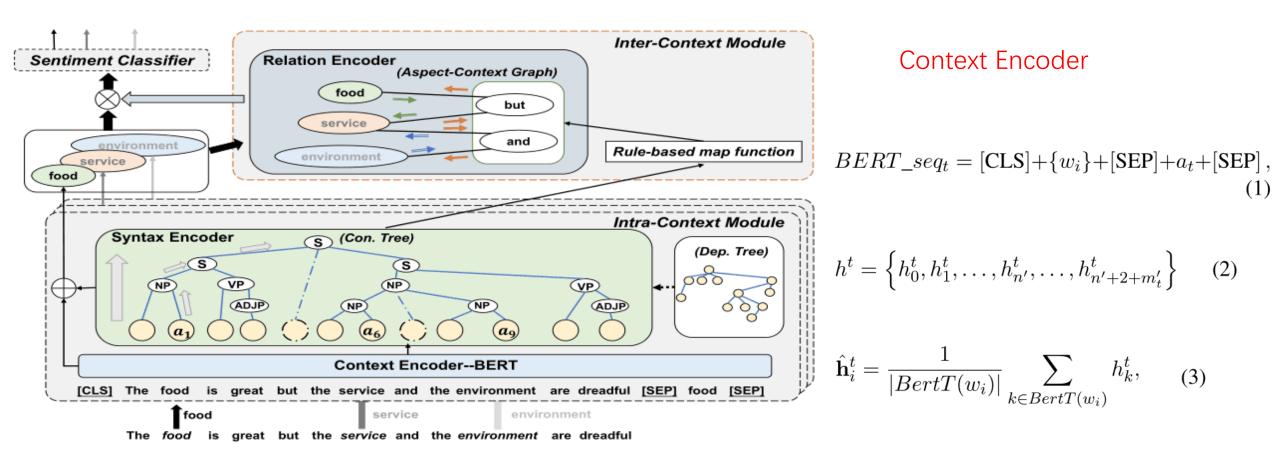


Many previous methods often assume that words closer to the target aspect are more likely to be related to its sentiment.

the inherent properties of dependency structure tree may introduce noise.



Introduction



a constituent tree often contains phrase segmentation and hierarchical composition structure.

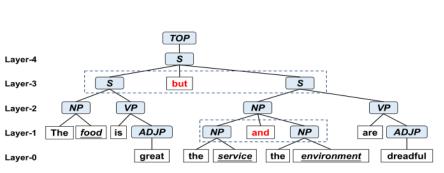
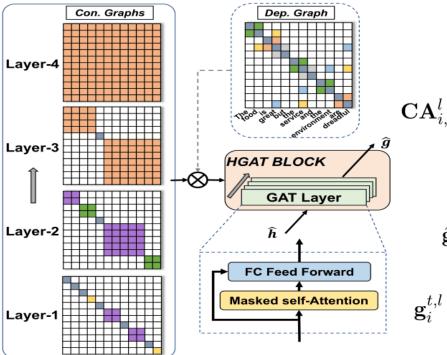
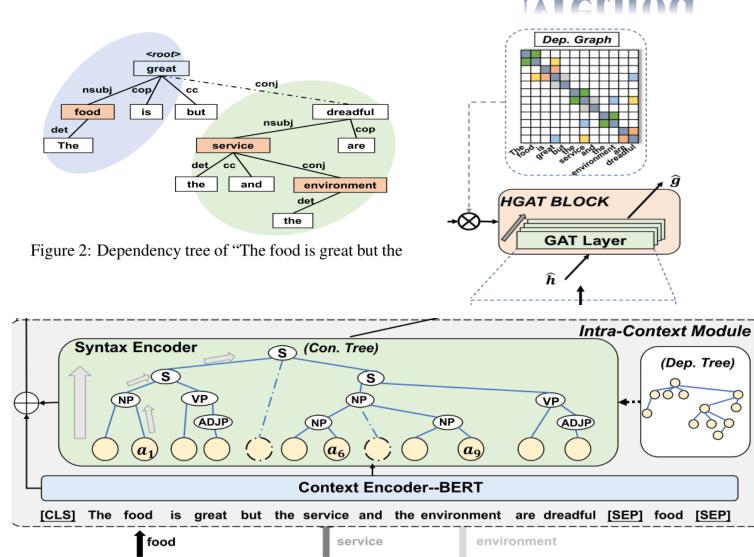



Figure 3: Constituent tree of the sentence "The food is great but the service and the environment are dreadful". Context words are in rectangles and parsed phrase types are in rounded rectangles.

Syntax Encoder

Graph construction

$$_{j} = \begin{cases} 1 & \text{if } w_{i}, w_{j} \text{ in same phrase of } \left\{ ph_{u}^{l} \right\} \\ 0 & \text{otherwise} \end{cases},$$
(4)


HGAT block

$$\hat{\mathbf{g}}_i^{t,l} = FC(\mathbf{g}_i^{t,l} + \hat{\mathbf{g}}_i^{t,l-1}), \qquad (5)$$

$$\mathbf{g}_{i}^{t,l} = \|_{z=1}^{Z} \sigma \left(\sum_{j \in \mathcal{N}^{t,l}(i)} \alpha_{ij}^{lz} \mathbf{W}_{g}^{lz} \hat{\mathbf{g}}_{j}^{t,l-1} \right), \quad (6)$$

$$\alpha_{ij}^{lz} = \frac{\exp\left(f\left(\hat{\mathbf{g}}_{i}^{t,l-1}, \hat{\mathbf{g}}_{j}^{t,l-1}\right)\right)}{\sum_{j' \in \mathcal{N}^{l}(i)} \exp\left(f\left(\hat{\mathbf{g}}_{i}^{t,l-1}, \hat{\mathbf{g}}_{j'}^{t,l-1}\right)\right)}, \quad (7)$$

The food is great but the service and the environment are dreadful

With dependency information

$$\mathbf{DA}_{i,j} = \begin{cases} 1 & \text{if } w_i, w_j \text{ link directly in Dep.Tree} \\ 0 & \text{otherwise} \end{cases}$$
(8)

position-wise dot

$$\mathbf{F}\mathbf{A} = \mathbf{C}\mathbf{A} \cdot \mathbf{D}\mathbf{A} \tag{9}$$

position-wise add

$$\mathbf{F}\mathbf{A} = \mathbf{C}\mathbf{A} + \mathbf{D}\mathbf{A} \tag{10}$$

conditional position-wise add

$$\mathbf{F}\mathbf{A} = \mathbf{C}\mathbf{A} \oplus \mathbf{D}\mathbf{A} \tag{11}$$

$$\mathbf{v}_t^{as} = \begin{bmatrix} \hat{\mathbf{h}}_t^t + \hat{\mathbf{g}}_t^t; h_0^t \end{bmatrix}$$
(12)

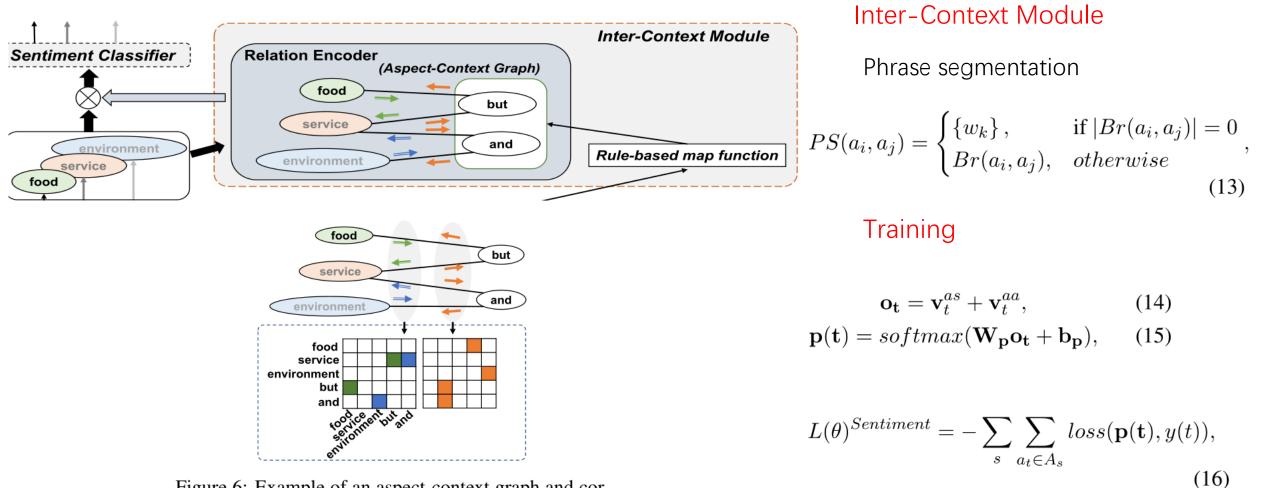


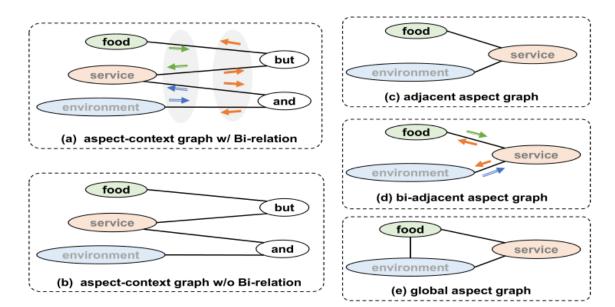
Figure 6: Example of an aspect-context graph and corresponding two adjacent matrices for distinguishing the bi-directional relations.

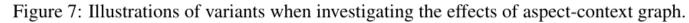
Dataset			ence-Level	Aspect-Level			
		Multi-Asp.	Single-Asp.			0	Neu.
Rest-	Train	971	1009	1980	2164	807	637
aurant	Test	315	284	599	727	196	196
Lantan	Train	538	916	1454	937	851	455
Laptop	Test	150	259	409	337	128	167
	Train	4297	0	4297	3380	2764	5042
MAMS	valid	500	0	500	403	325	604
	Test	500	0	500	400	329	607
Twitter	Train	0	6051	6051	1507	1528	3016
	Test	0	677	677	172	169	336

		Dataset								
Category	Model	Restaurant		Laptop		MAMS		Twitter		
		Acc.(%)	F1.(%)	Acc.(%)	F1.(%)	Acc.(%)	F1.(%)	Acc.(%)	F1.(%)	
w/o Syn.	BERT-SPC	84.46	76.98	78.99	75.03	82.82	81.90	73.55	72.14	
	AEN-BERT	83.12	73.76	79.93	76.31	-	-	74.71	73.13	
w/ Syn.	R-GAT	86.60	81.35	78.21	74.07	-	-	76.15	74.88	
	RGAT+	86.68	80.92	80.94	78.20	84.52	83.74	76.28	75.25	
	DGEDT	86.30	80.00	79.80	75.60	-	-	<u>77.90</u>	75.40	
	DualGCN	87.13	81.16	81.80	78.10	-	-	77.40	76.02	
	SDGCN	83.57	76.47	81.35	78.34	-	-	-	-	
	InterGCN	87.12	81.02	82.87	<u>79.32</u>	-	-	-	-	
Ours	BiSyn-GAT	87.49	81.63	82.44	79.15	84.90	84.43	77.99	76.80	
	BiSyn-GAT+	87.94	82.43	82.91	79.38	85.85	85.49			

Table 1: Statistics of datasets. Multi-Asp., Single-Asp. indicate the number of sentences with multiple or single aspect; Pos., Neg., and Neu. show the number of aspects towards positive, negative and neutral label.

Table 2: Performance comparison of models on four datasets. The best are in **bold**, and second-best are <u>underlined</u>.


		Dataset								
Category	egory Ablation		Restaurant		Laptop		MAMS		ter	
		Acc.(%)	F1.(%)	Acc.(%)	F1.(%)	Acc.(%)	F1.(%)	Acc.(%)	F1.(%)	
w/o AA	w/o syn. & dep.(BERT+)	84.99	78.51	79.11	75.76	82.71	82.22	75.48	74.54	
	w/o con.	86.42	80.10	80.22	76.42	83.38	82.90	76.51	75.29	
	w/o dep.	86.60	81.51	81.80	78.48	84.58	84.09	76.81	75.86	
	con.×dep.	86.86	80.82	80.85	77.27	84.21	83.76	76.51	75.37	
	con.+dep.	86.86	81.59	82.12	78.93	84.73	84.14	77.40	<u>76.39</u>	
	con.⊕dep. (BiSyn-GAT)	87.49	81.63	82.44	79.15	84.90	84.43	77.99	76.80	
w/ AA	con.+dep.	<u>87.76</u>	82.18	82.75	79.16	85.48	85.05	-	-	
	con.⊕dep. (BiSyn-GAT+)	87.94	82.43	82.91	79.38	85.85	85.49	-	-	


Table 3: Ablation study. Notations "con." and "dep." represent syntax information from constituent tree and dependency tree, respectively. $\times, +, \oplus$ represent the position-wise dot, position-wise add, conditional position-wise add operations, respectively, when fusing two syntax information. "AA" represents modeling aspect-aspect relations. The best performances are in **bold**, and second-best are <u>underlined</u>.

		Dataset					
	Model			MAMS			
		Acc.(%))F1.(%)	Acc.(%)	F1.(%)		
	BiSyn-GAT	87.49	81.63	84.90	84.43		
aspect-context	t w/ Bi-relation	87.94	82.43	85.85	85.49		
graph	w/o Bi-relation	87.85	82.27	85.10	84.69		
	adjacent	87.49	81.69	85.10	84.61		
aspect graph	Bi-adjacent	87.40	81.53	85.18	84.74		
	global	87.49	81.70	85.32	84.88		

Table 4: Performance comparison of aspect-context graph variants on Restaurant and MAMS dataset. The best performances are in **bold**.

Model	Parser	Resta	urant	MAMS		
WIGUEI	r al sei	Acc.(%)	F1.(%)	Acc.(%)	F1.(%)	
I	Base	84.99	78.51	82.71	82.22	
w/o dep.	Stanford Parser	86.51	81.34	84.51	84.06	
	SuPar	86.60	81.51	84.58	84.09	
BiSyn-GAT	Stanford Parser	86.66	81.56	84.88	84.31	
DISYII-GAI	SuPar	87.49	81.63	84.90	84.43	
BiSyn-GAT+	Stanford Parser	87.84	82.39	85.78	85.40	
BISYN-GAI+	- SuPar	87.94	82.43	85.85	85.49	

Table 5: Experiments results with different parsers. w/o dep. is one variant of BiSyn-GAT, only using constituent information.

Sentences	Aspects	BiSyn-GAT	BiSyn-GAT+
it doesn't look like much on the $outside_{neg}$, but the minute	outside	neu 🗡	neg 🗸
you walk inside, it's a whole other atmosphere pos.	atmosphere	pos 🗸	pos 🗸
while the service \underline{neg} and setting \underline{neg} were average	service	neg 🗸	neg 🗸
, the food _{pos} was excellent.	setting	neu 🗡	neg 🗸
-	food	pos 🗸	pos 🗸
food was average, the appetizers _{pos} were	appetizers	pos 🗸	pos 🗸
better than the main $courses_{neu}$.	main courses	pos 🗡	neu 🗸
i have no complaints about the wait pos or the service pos	wait	neu 🗡	pos 🗸
<u>but</u> the $pizza_{neg}$ was bit at all something to write home about.	service	neg 🗡	pos 🗸
	pizza	neg 🗸	neg 🗸

Table 6: Predictions from *BiSyn-GAT* and *BiSyn-GAT*+. The notations pos, neg, and neu in the table represent positive, negative, and neutral. For each sentence, the aspects are displayed in bold, with golden sentiment polarities as the subscripts. The phrase segmentation words are shown underline between the corresponding two aspects. False predictions are marked with \checkmark while true predictions are marked with \checkmark .

Con.		Dataset									
Tree	Resta	urant	Laptop		MAMS			Twitter			
Depth	Train	Test	Train	Test	Train	Valid	Test	Train	Test		
1	177	68	206	84	208	16	19	1215	117		
2	369	135	724	247	1301	152	141	1066	147		
3	462	148	936	312	2265	244	261	1186	123		
4	363	108	612	202	2085	276	292	947	96		
5	311	75	429	116	1761	203	194	677	79		
6	237	40	266	73	1211	141	157	414	57		
7	136	27	205	41	901	99	117	246	23		
8	108	10	106	18	545	81	65	145	22		
9	59	8	43	14	380	57	34	86	8		
≥ 10	60	13	81	12	529	63	56	69	5		
MAX.	18	13	17	13	19	17	15	14	11		

Table 7: Depth distribution of parsed constituent trees on four datasets. The maximums are in **bold**. The last row lists the max tree depth of each dataset.


Multi.	Dataset							
Aspect	Restaurant		Laptop		N			
Distribution	Train	Test	Train	Test	Train	Valid	Test	
2	555	192	343	101	2568	285	264	
3	261	73	137	33	1169	136	173	
4	103	31	40	9	364	55	45	
5	32	14	9	6	126	16	10	
6	11	3	5	1	48	5	5	
7	5	1	3	-	13	2	-	
8	3	-	-	-	6	-	1	
9	1	-	-	-	1	-	-	
10	-	-	-	-	1	1	1	
11	-	-	-	-	1	1	1	
13	-	1	1	-	-	-		

Table 8: Multi.aspect distribution of three datasets.

Thank you!

